Studies on the Total Synthesis of Hainanolide (VII) - Analysis of the Relative Stereochemistry of key Intermediate 2

Yan Wu LI, Liang HUANG*

Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050

Abstract: The relative stereochemistry of an intermediate **2** in the total synthesis of hainanolide **1** was studied by various NMR spectroscopic techniques.

Keywords: Hainanolide, NOE, ¹H, ¹³C-NMR, HMBC, HMQC, spectra.

The natural product, hainanolide¹ **1**, also under the name harringtonolide² demonstrated antitumor and antiviral activities in preliminary test. Its structure was determined by X-ray diffraction. The total synthesis of **1** was reported recently by Mander³. A different scheme of its synthesis has been studied in our laboratory⁴. Here the determination of the stereochemical structure of the key intermediate **2** in the synthesis was reported.

HMBC and HMQC spectra identified the skeleton and H, C correlation of compound **2** as shown in **Figure 2**. The results of ¹H and ¹³C spectra were listed in **Table 1**. NOE revealed that A, B, C three rings being *cis* fused as that in hainanolide and with 5a-COOCH₃ and C₃-OH at the same side as H_{2a} and C₄-OCH₃ at back side being at the right positions for building lactone ring and oxobridge.

Based on the data of coupling constant (J Hz: $H_{2a}/H_3=12 H_3/H_4=7.2$, $H_4/H_5=0$) shown in **Table 1**, the dihedral angles of C_{2a} -H/C₃-H, C_3 -H/C₄-H and C_4 -H/C₅-H were evaluated about 180°, less than 180° and 90° respectively. The molecular model was thus constructed which seems to be comfortable as deformed boat for ring B, chair for A and envelop for C (**Figure 3**) to reduce possibly steric effect between substituents. It coincides nicely with what obtained from calculation using Alchemy III. Further confirmation of the stereochemical structure by X-ray analysis will be carried out later.

Yan Wu Li *et al*.

No	$\delta_{\rm C}$	$\delta_{\rm H}$	No	$\delta_{\rm C}$	$\delta_{\rm H}$
1	64.34		8b	37.42	3.13(dd,1H,J _{8b,2a} =7,J _{8b,8a} =12)
2	35.98	$2.38(dd, 1H_{\alpha}, J_{2\alpha, 2a}=9, J_{2\alpha, 2\beta}=14.5)$	9	19.40	0.91(d, 3H, J _{9,5} =7.5)
		2.60(dd, $1H_{\beta}$, $J_{2\beta, 2a}$ =8.5, $J_{2\beta, 2\alpha}$ =14.5)			
2a	37.42	2.10(dddd, 1H, $J_{2a, 2\beta} = 8.5$, $J_{2a, 2\alpha} = 9$,	10	57.38	3.42(s, 3H)
		$J_{2a, 3}=12, J_{2a, 8b}=12)$			
3	78.39	3.90(dd ,1H, J _{3,4} =7, J _{3,2a} =12)	11	170.23	
4	90.92	2.94(d, 1H, J _{3, 4} =7)	12	171.97	
5	41.50	2.27(q, 1H, J _{5,9} =7.5)	13	176.81	
5a	49.66		14	52.42	3.70(s, 3H)
6	32.85	$1.98(m, 1H_{\alpha})1.57-1.65(m, 1H_{\beta})$	15	52.04	3.72 (s, 3H)
7	21.63	$1.57-1.65(m, 1H_{\beta}) 1.04(m, 1H_{\alpha})$	16	52.76	3.75 (s, 3H)
8	25.24	$1.44(m, 1H_{\beta}) 0.90(m, 1H_{\alpha})$	OH		1.57-1.65(m, 1H)
8a	43.48	2.94(dd, 1H, $J_{8a, 8b}=7$, $J_{8a, 8\beta}=7$, $J_{8a, 8\alpha}=12$)			

 Table 1
 ¹H(300MHz), and ¹³C(75MHz) NMR data for 2(CDCl₃)

 Table 2
 NOESY 1D of compound 2 (500MHz in CDCl₃)

Irradiation H	Correlation peaks
H_2	H_{2a}, H_3
H_{2a}	H_2 , H_4+H_{8a} , C_5 -Me, H_{8b}
H_3	Η ₂ , Η _{6α}
H_4+H_{8a}	H_{2a} , H_{8b} , $H_{8\beta}$, C_5 -Me, C_4 -OMe
H_5	H ₆ β, C ₅ -Me, C ₄ -OMe
H _{8b}	$H_{2a}, H_4 + H_{8a}, C_5 - Me$

References

- 1. Buta, et al., J. Org. Chem., 1978,43,1002.
- N. Sun, et al., Acta. Pharm. Sinica, **1979**,14,39. L. N. Mander, et al., J. Am. Chem. Soc., **1998**, 120, 1914. 2. 3.
- 4. Luyan Zhang, et al., Chin. Chem. Lett., 1996, 7, 892.

Received 8 January, 2002